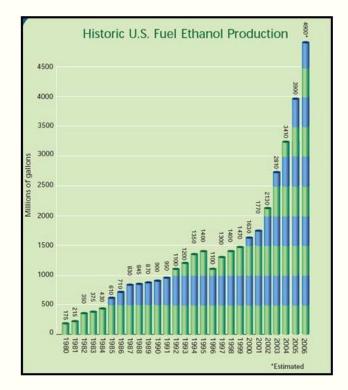

Biorefinery Development: A United States Perspective

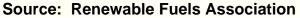
September 12, 2007

John B. Howe, VP, Public Affairs German Biorefinery Congress 2007 Berlin, Germany – September 12, 2007

55 Cambridge Parkway Cambridge, MA 02142 617.674.5300 www.verenium.com

Verenium Corporation (Nasdaq: VRNM) Merger created strategic synergies, economy of scale


Outline of Presentation


- Driving factors in recent growth in US biofuels markets and shifting focus to 2G "advanced biofuels"
- Recent US policy initiatives to promote cellulosic ethanol technology research, development & deployment ("RD&D")
- Overview of Verenium Corporation: Technology overview, recent progress, five year plan
- Realizing the vision of a 21st century biofuels industry: remaining obstacles in public policy

Recent Growth of the US Ethanol Industry

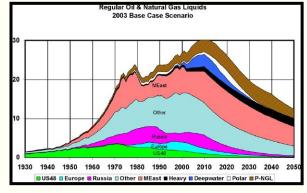
- Episodic US interest in ethanol since the dawn of the auto era
 - 1900s (Ford's "Fuel of the Future")
 - 1930s ("Chemurgy Movement")
 - 1970s ("Gasohol")
- Sustained growth began with onset of higher petroleum prices post-2000
- Spurred by the ban of oxygenate MTBE by three US states in 2004 (CA, NY, CT) – now banned in ≈half of the states

The Grain Ethanol Backlash of 2007

- To date, 97% of all US ethanol capacity is based on corn (land, water and fertilizer intensive)
- 2x rise in grain prices (2006) has triggered a high-profile "food vs. fuel" controversy
- A broader debate is now underway in the US: how to integrate US biofuel needs with other considerations, <u>e.g.</u>,
 - Food requirements
 - Land and water use
 - Net energy balance
 - Net carbon balance
- Further growth in ethanol is critically dependent on progress in industrial biotechnology

US News & World Report, February 2007

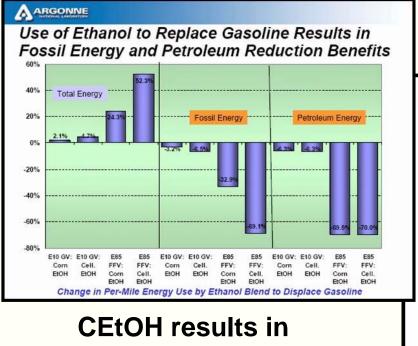
The US Fuels Dilemma <u>Requires</u> a Solution


\$ Impact on US Competitiveness

Global Climate Change

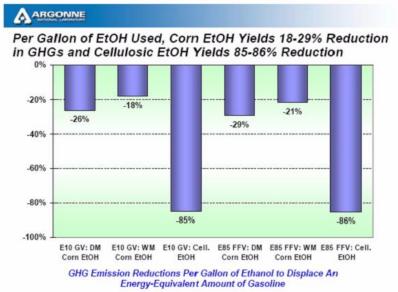
How Long Until "Peak Oil?"

Despite Controversy, US Support for Non-Petroleum Fuels Remains Strong



The Transition is Now Underway to 2nd Generation "Advanced Biofuels"

- Cellulosic biomass offers much greater total abundance (2005 Oak Ridge National Laboratory "Billion Ton Study" finds potential for 1.3B tons on an annual recurring basis)
- Potential for much higher ethanol productivity per acre than corn (1500-1800 gallons/acre vs. 400)
- Lower input requirements (e.g., fertilizer, pesticide, herbicide, irrigation water)
- Higher net energy production (EROEI) and dramatically lower net carbon emissions



Energy, Environmental Advantages of CEtOH

higher net energy

CEtOH results in lower net carbon

Source: M. Wang, Argonne National Laboratory "Well to Wheels Study"

EPAct 2005 Incentives for CEtOH Development

- Direct production incentives, e.g.,
 - Increased Renewable Fuels Standard / 2.5x credit for CEtOH
 - Additional \$.10/gallon credit for CEtOH
 - "Reverse Auction" for production of first 1B gallons of CEtOH
- Incentives for deployment of E85 "Flex Fuel Vehicles"
 - Tax credits for buyers of new alternative fuel vehicles
 - Mandates for purchases of government fleets
- Expanded government-funded RD&D
 - Enlarged programs in Bioenergy, Biomass RD&D
 - Loan guarantees and grants for biorefinery projects

The President's Biofuels Initiative (2006)

- Feedstock Development
 - Develop handling, conversion technologies for a broader range of feedstocks
 - New organisms and processing techniques aimed toward "consolidated bioprocessing"
 - Regional Biomass Energy Feedstock Partnerships (to help each region of US contribute toward goal of 1.3B dry tons)
- Conversion Technologies
 - DOE's focus is on progressing both biochemical and thermochemical platforms
 - Initiative targets improved pretreatment catalysts as well as more efficient enzyme cocktails

Current DOE Bioenergy RD&D Initiatives

- Integrated Biorefinery Demonstration Projects
 - awards announced 2/07; six projects, \$385M
- Improved Ethanologens
 - awards announced 3/07; five projects, \$23M)
- Bioenergy Research Centers
 - awards announced 6/07; three projects, \$375M)
- 10% scale demonstration biorefinery projects
 - bids submitted 8/07; up to \$200M)
- Improved Cellulase Enzymes
 - bids due 10/07; up to \$33.8M)
- Loan Guarantees
 - Project submissions 12/06; DOE action pending)

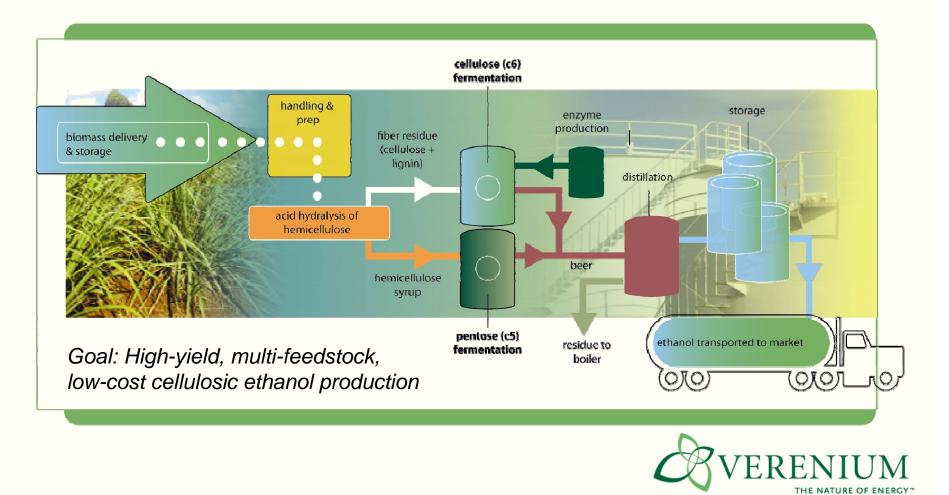
VRNM: Cellulosic Ethanol Plant Operations

Industry leading production and development capabilities

PILOT PLANT

- One of the only fully integrated pilot plants in the US
- Operational pilot-scale facility for dynamic R&D
- Jennings, Louisiana

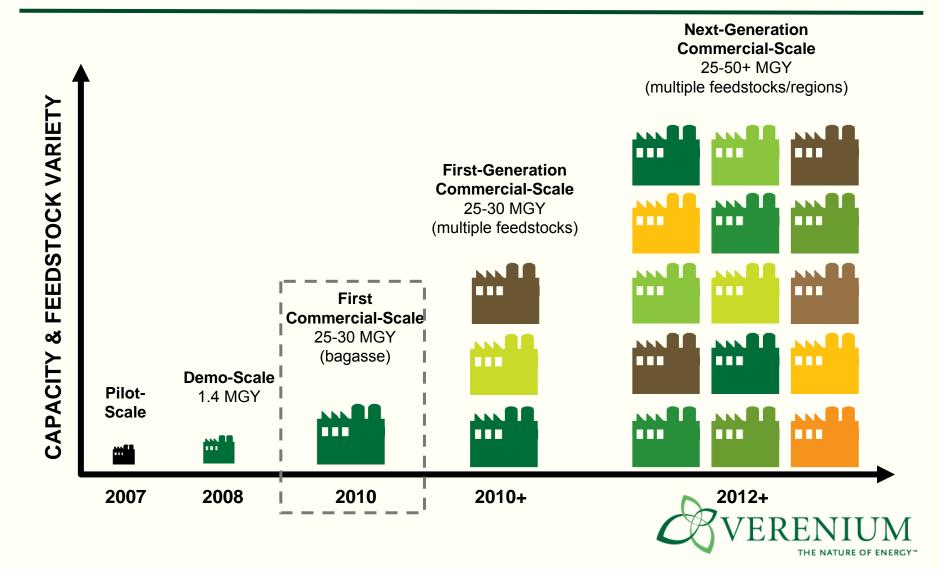
DEMO PLANT


	•	1.4 MGY demo plant under construction
	٠	Cellulosic ethanol from sugarcane bagasse, specially-bred
		energy cane, other feedstocks
	٠	Mechanical completion expected by the end of Q108
	•	Jennings, Louisiana

DEMO PLANT

Proven Cellulosic Ethanol Technologies

The Verenium Production Process


Unique Enzyme Technologies

- Biodiversity
 - Unique access and patented approaches to capture nature's enormous array of microbial biodiversity
 - DirectEvolution[™] Technologies
 - Multiple methods to optimize enzyme performance via laboratory evolution at the gene/DNA level
 - High-Throughput Screening
 - Ability to rapidly screen up to 100 MM/1B samples per day to find the ideal enzyme
 - Host Engineering
 - Revolutionary heterologous over-expression of unique enzymes
 - Commercial-Scale Manufacturing
 - Over seven enzyme products made at commercial scale

Biofuels Growth Strategy

1st commercial-scale cellulosic ethanol facility in 2010

15

Verenium's Strategy: Five-point foundation for success

Growing the US Ethanol Industry: Key Public Policy Issues To Be Addressed

Expanded Renewable Fuels Standard

 Pending proposal in US Senate to expand RFS from 12BGY (2014) to 36BGY (2022), mostly from CEtOH

Cellulosic Ethanol Production Tax Credits

 Cellulosic-specific credit for first volumes (e.g., up to 2BGY) offers a highly cost-effective way to create "pull" from RD&D to deployment

• Enacting a Viable Loan Guarantee Program

- Authorized in EPAct 2005, it is not yet implemented but urgently needed to establish the template for future project development
- Moving Toward a Sustainable Carbon Policy
 - A framework that monetizes avoided carbon emissions (e.g., carbon tax or cap & trade system) will create a powerful driver for CEtOH investment

CEtOH: An International and Global Perspective

- CEtOH is a technology with global application on a highly distributed basis – a source of economic development and opportunity in developed and developing nations alike
- Global development of an ethanol industry will support critical <u>environmental</u>, <u>economic</u> and <u>security</u> objectives. Conditions have ripened for Henry Ford's "Fuel of the Future!"
- Verenium expects to pursue partnering and licensing opportunities for its technology on a global basis

Thank You? Questions?

john.howe@verenium.com www.verenium.com

