

Enzyme complex for highly efficient saccharification of lignocellulosic feedstocks

Prof. Arkady P.Sinitsyn

A.N.Bach Institute of Biochemistry, Russian Academy of Sciences

German-Russian Forum Biotechnology At the BIOTECHNICA 2011, Hannover 10.10.2011

Concept of Pilot Plant for complex utilization of lignocellulosic feed-stocks

Selection of enzymes for saccharification of different lignocellulosic feed-stocks **Straw Grain hulls** Woody **Bagasse Grass** Corn stalks **DDG** & stower materials **Pretreatment Selection of enzymes for** hydrolysis of polysaccharides Accessory Eg-s CBH-s **Xylanases** β-G enzymes **Mannanases** Fermentable sugars (C6 and C5)

Pretreatment leads to destruction of a crystalline structure of cellulose and/or to lignin degradation

Different dry mills

Impeller mill IM450

Ball mill-activator AGO-2

Efficiency of milling on the Impeller mill IM450

Initial aspen chips

Aspen after milling

Aspen particles after milling (light microscopy)

Comparison of reaction ability of different pretreated lignocellulosic feed-stocks

Saccharification by cellulases, 10 FPU/g + 20 bGU/g, pH 5, 50°C, 24 h

Novel strains producers of cellulases, hemicellulases and related enzymes available in INBI-MSU-Fermtech

- Mutants of Penicillium sp.:
 - Strain B221-151
 - Strain B221-6
- Mutants of *Trichoderma sp.*:
 - Strain TW-1
 - Strain TW-307

Selection of unique cellulolytic enzymes: hydrolysis of steam-exploded Douglas Fir by different cellulases

10 FPU per 1 g of substrate, [S] = 5%, pH 5, 50°C Sinitsyn et al, Appl.Biochem.Biotechnol., 2005, v.121-124, p.219

Glucose yield by action of individual enzymes

Pretreated Corn Cobs, pH5, 50°C, 72 hours. Total protein concentration - 0.2 mg/ml, cellobiase - 0.1 U/ml.

Penicillium sp. strain – producer of cellulase complex with remarkably better saccharification ability than *Trichoderma sp.*

- Possible driving forces of *Penicillium* product:
 - High specific activity of different cellulases
 - Diverse and efficient enzymatic cocktail
 - Production of β-glucosidase (cellobiase)
 - Less inhibition by lignin and lignin residue
 - Less unproductive adsorption of cellulose

Results of classical mutagenesis of Penicillium verruculosum strain (x5)

Strategy for creation of recombinant strain – producers of enzymes for saccharification of lignocellulosic feedstocks. GENETIC ENGINEERING APPROACH

Example of high level expression of single target enzyme by recombinant *Penicillium* strain using *cbh1* promoter

(heterologous β-glucosidase)

Penicillium 537 host strain

Penicillium strain – producer of β-glucosidase (<u>CBH-promoter</u>)

Results of saccharification of milled softwood

[S] = 10%, pH 5, 50°C

Cloning & expression of different genes using *cbh1* promoter

Strain	Gene	Enzyme
T.reesei and P.verruculosum	cbh1 cbh2	Cellobiohydrolase 1 Cellobiohydrolase 2
T.reesei and P.verruculosum	egl1 egl2	Endoglucanase 1 Endoglucanase 2
T. reesei	egl4	Endoglucanase 4
P. canescens	xylA	Xylanase A
T. reesei	xyllll	Xylanase 3
T. reesei	manB	Mannanase B

Results of saccharification of <u>dry milled</u> <u>bagasse</u> by recombinant enzyme preparations (*cbh1* promoter)

RS release in the course of saccharification of milled bagasse by XyIA-4, EgIV-2 and reference enzyme preparations

[E]= 5 mg/g, [S]= 100 g/l, pH 5, 50°C

Cloning of different genes using hist4 promoter

Strain	Gene	Enzyme
A.niger	bgl (AN: AF302657)	β-glucosidase
P.canescens	xylA (AN: AY756109)	Xylanase A
P.verruculosum	egl2	Endoglucanase 2

Results of screening of recombinant enzyme preparations obtained by hist4 promoter by saccharification ability, dry milled hardwood and bagasse

[E]= 5 mg/g, [S]= 100 g/I, pH 5, 50 $^{\circ}$ C, 24 hours

Composition of the most efficient recombinant enzyme preparation obtained using *hist4* promoter (heterologous β-glucosidase)

Penicillium 537 host strain

Penicillium strain – producer of cellulase complex enriched by β-glucosidase (<u>hist-promoter</u>)

Creation of recombinant strain – producers of efficient enzyme complex for saccharification of lignocellulosic feedstocks by simultaneous expression of several target genes

Results of hydrolysis of <u>dry milled bagasse</u> by enzyme preparations obtained by recombinant *Penicillium* strains after simultaneous expression of different target enzymes (EG-s, CBH-s, bG)

5 mg/g of protein loading, [S] = 10%, pH 5, 50°C

Thank you!

apsinitsyn@gmail.com

www.inbi.ras.ru

+7 (495) 939-5966

+7 (916) 611-4857