

DEUTSCHER BIORAFFINERIE-KONGRESS 2009

Bioraffinerie: Ein wichtiger Baustein des Klimaschutzes

Prof. Dr. Uwe Lahl
Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Globale Herausforderung

vor dem Hintergrund des rasanten Anstiegs der Erdbevölkerung und des immensen Industrialisierungsprozesses in den Schwellenländern, müssen wir den Klimawandel hemmen und die Endlichkeit der Rohstoffe managen.

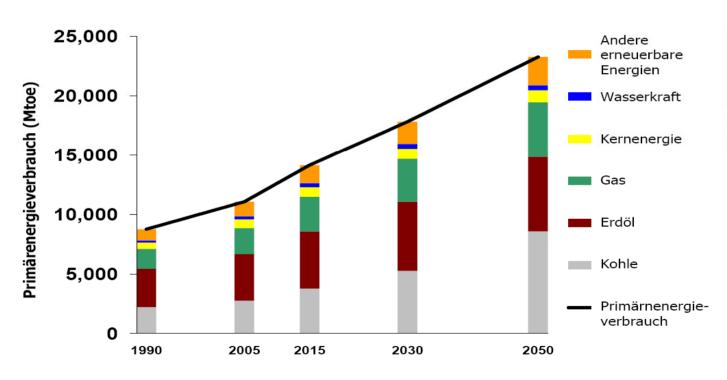
Globale Herausforderung

- □ FAO Prognose für Nahrungsmittelbedarf:
 - Um den Nahrungsbedarf der wachsenden Weltbevölkerung zu decken, muss die globale Nahrungsmittelproduktion bis 2030 um rund 50 % gesteigert werden.
- zusätzlich wird auch der Energiebedarf immens steigen
- gleichzeitig muss der Anstieg der globalen
 Durchschnittstemperatur auf max. 2°C gegenüber dem vorindustriellen Niveau begrenzt werden

Vierter IPCC Report

von allen UNFCCC Unterzeichnerstaaten genehmigt

Temperatur- anstieg	Alle Treibhaus- gase	CO ₂	CO ₂ Emissionen 2050 (% von 2000 Emissionen)	
(°C)	(ppm CO ₂ eq.)	(ppm CO ₂)	(%)	
2,0-2,4	445-490	350- 400	-85 bis -50	
2,4-2,8	490-535	400- 440	-60 bis -30	
2,8-3,2	535-590	440- 485	-30 bis +5	
3,2-4,0	590-710	485- 570	+10 bis +60	


In support of the G8 Plan of Action

© OECD/IEA - 2

Deutscher Bioraffinerie-Kongress 2009

Primarenergieverbrauch Basisszenario

ENERGY TECHNOLOGY PERSPECTIVES 2008 Scenarios & Strategies to 2050 INTERNATIONAL AGENCY THE

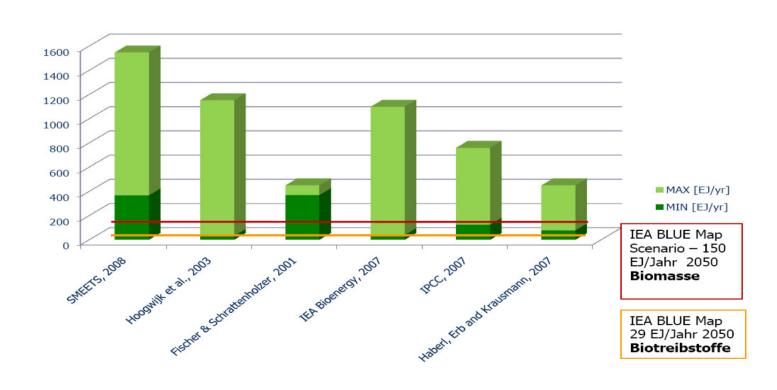
In support of the G8 Plan of Action

© OECD/IEA - 2008

Ziele

- Sicherstellung einer nachhaltigen Versorgung mit Nahrungsmitteln und Rohstoffen
- Aufhalten des Klimawandels durch Minderung der THG-Emissionen

Strategien


- deutliche Erhöhung der Energieeffizienz
- massiver Ausbau der erneuerbaren Energien
 - Biomasse, wichtigstes Standbein
- sparsamer Umgang mit Energie
- Verbesserung derRessourceneffizienz

Bioenergiepotenziale weltweit

Konkrete Maßnahmen

EU Klima- und Energiepaket

- THG-Emissionen bis 2020 um 30% ggü. 1990 senken, wenn andere Staaten vergleichbare Verpflichtungen eingehen (sonst 20%)
- Anteil an EE soll verbindlich auf 20% in 2020 erhöht werden
- bedeutet: für DEU ein Anteil von 18% am Endenergieverbrauch
- Reduktion des EU-Gesamtenergiebedarfs um 20%
- 10% Anteil an EE im Kraftstoffverbrauch:
 - nur dann verbindlich wenn die Erzeugung nachhaltig ist und Biokraftstoffe der 2. Generation z.V. stehen – wichtig für Bioraffinerieentwicklung!

Konkrete Maßnahmen

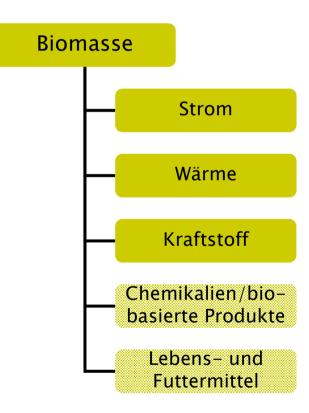
■ Beschlüsse von Meseburg

- 30 konkrete Maßnahmen
- Ziele bis 2020:

- mind, 30% EE-Strom
- 14% EE-Wärme
- 7% Biokraftstoffe
- 20% Energieeffizienz
- = 25% KWK
- 2,6 Mrd. € in 2008 Förderung!

Rolle der Biomasse - Chancen

- kann wichtigen Beitrag leisten zu
 - Klimaschutz
 - Versorgungssicherheit
 - Entwicklung im ländlichen Raum in Industrie- und Entwicklungsländern
 - Überwindung der Energiearmut in EL
 - Überwindung der traditionellen gesundheitsschädlichen Nutzungsformen der Bioenergie



Rolle der Biomasse – Chancen

vielseitig einsetzbar

- Ernährung
- verschiedenen energetische Nutzungen
- verschiedenen stoffliche Nutzungen

Beitrag und zukünftige Rolle von Biomasse

	2007		2020	
	EE insgesamt	davon Bioenergie	EE gesamt (Meseberg bzw. EEG od. EE-RL)	davon Bio- energie nach Leitstudie*
Anteil an EE am gesamten Endenergieverbrauch	8,6%	6,2%	1 8%	10,9
Anteil an EE am gesamten Primärenergieverbrauch	6,7%	4,9%	16%	11%

^{*} BMU-Leitstudie 2008 "Ausbau der Erneuerbaren Energien"

- der Anteil an Biomasse am Primärenergieverbrauch wird sich bis 2020 verdoppeln
- Anteil der Biomasse an EE wird bis 2020 mehr als die Hälfte ausmachen

Zukünftige Rolle der Biomasse

- wird mittelfristig (bis 2050) ein unverzichtbarer Bestandteil der Klimaund Energiestrategie bleiben
- □ ab 2050 können andere EE (Wind, Solar etc.) erhebliche Beiträge zum Energiebedarf liefern

Rolle der Biomasse -Risiken

- □ Flächen- und Nutzungswettbewerb zw.
 - Naturschutz
 - Ernährung
 - verschiedenen energetischen und industriellen Nutzungspfaden
- weitere Risiken
 - für Biodiversität
 - negative Klimawirkung (z.B durch Landnutzungsänderungen)
 - durch vermehrten Dünge- und Pflanzenschutzmitteleinsatz

Deutscher Bioraffinerie-Kongress 2009

Rolle der Biomasse in einer nachhaltigen Energie- und Rohstoffwende

kritische Einschätzungen

WGBU: nachhaltige Biomassenutzung ist möglich

- Chancen nutzen!
- Risiken müssen vermieden werden!

- Entwicklungszusammenarbeit;
 Unterstützung länderspezifischer nachhaltiger Biomassestrategien
 - das zukunftsfähige Bioenergiepotenzial in Entwicklungs- und Schwellenländern mobilisieren
 - die Energiearmut signifikant senken und
 - den Aufbau klimaverträglicher Energiesysteme stärken
 - Stärkung der Handlungskapazitäten (z. B. zur Entwicklung und Umsetzung nachhaltiger Bioenergiepolitik und Verknüpfung von Strategien für Bioenergie mit Strategien zur Ernährungssicherung)

- Verfügbarkeit marktreifer Technologien erhöhen
 - z. B. Biomasse-Brennwertkessel, Biokraftstoffe 2. Generation
- Erschließung bisher ungenutzter Biomassepotenziale
 - Nutzung biogener Abfall- und Reststoffe (Gülle, Stroh, Bioabfälle)
 - Erzeugung von Holz auf landwirtschaftlichen Flächen, z.B. Kurzumtriebsplantagen
 - Anbau von Zwischenfrüchten
 - Revitalisierung degradierter Flächen

- Nachhaltigkeitsanforderungen entwickeln
 - Die Nachhaltigkeitsanforderungen der EU-RL "Erneuerbare Energien" werden in der Biomassestrom– /Biokraftstoffverordnung umgesetzt.
 - Eine Anrechnung auf die Quote/ Förderung ist nur noch möglich, sofern die Nachhaltigkeitsanforderungen an die Treibhausgasbilanz und Landnutzung eingehalten werden.
 - Die Biomassestrom-Nachhaltigkeitsverordnung wurde im Kabinett bereits beschlossen.
 - Die Biokraftstoff-Nachhaltigkeitsverordnung befindet sich derzeit in der Notifizierung.

 Einsatz ressourcen- und energieeffizienter Technologien zur Umwandlung von Biomasse

Einsatz von Bioraffinerien

 Vorteil: integrierte Herstellung von Nahrungsmitteln, biobasierten Produkten/Chemikalien, Energieprodukten möglich und Ziel dieser Systeme

- Wertschöpfung der Ressource "Biomasse" kann erheblich erhöht werden
- zudem können auch nicht-rohstoffliche Ressourcen (Energie, Wasser, Lösungsmittel) effizienter eingesetzt werden
- Abfälle können zudem vermieden werden

- können einen dringend notwendigen Beitrag zur einer nachhaltigen Energie- und Rohstoffstrategie leisten
- können zur Verringerung von Nutzungs- und Flächenwettbewerb beitragen
- die verschiedenen Nutzungspfade können Voneinander profitieren; Wirtschaftlichkeit einzelner Produkte wird erhöht

- können damit einen wichtigen Beitrag leisten zu den strategischen Zielen
 - Klimaschutz
 - Energieeffizienz
 - Ressourceneffizienz
 - Nachhaltigkeit bei Biomassenutzung aber auch in der Chemieindustrie

- Chancen nutzen
- mit Bioraffinerien Biomassepotenziale effizienter erschließen!
- und Green Tech, strategische Bedeutung für die deutsche Industriepolitik

Rolle Grüner Technologien

- Weltmarktvolumen heute 1400 Milliarden €
- Weltmarktvolumen morgen, 2020, 3100 Milliarden €
- □ Deutschland von 220 auf 500 Milliarden €
 - Deutschland: heute 280 000 Arbeitsplätze
 - Deutschland: heute Weltmarktanteil 5 bis 30 %
 - Deutschland: rund 400 Milliarden € Investitionen bis 2020

- 1. Deutscher Bioraffinerie-Kongress 2007
 - Startschuss für strategische Bioraffinerieentwicklung in Deutschland

- Demonstrationsanlage und ein Verbundprojekt auf den Weg gebracht
- Förderung von F&E Aktivitäten signifikant intensiviert;
 Aktivitäten sind aufeinander abgestimmt und ergänzen einander

- BMU hat derzeit Mittel von ca. 12 Mio. € in verschiedenen Förderprogrammen für Bioraff. eingestellt; einige Projekte bereits begonnen
 - Klimaschutzinitiative: Demonstrationsanlage "Grüne Bioraffinerie"
 - Klimaschutzinitiative: geplantes Mikroalgen-Projekt beim CBP InfraLeuna
 - Programm: "Bioenergienutzung Optimierung der energetischen Biomassenutzung" verschiedene F&E Projekte zur Koppelnutzung

- sektorübergreifender Dialog gestärkt
- Verbesserte Integration der stofflichen Nutzung in Biomassestrategien der energetischen Nutzung
 - stoffliche Nutzung/Koppelnutzung wird berücksichtigt im BMU-Förderprogramm "Bioenergienutzung – Optimierung der energetischen Biomassenutzung" und in der Klimaschutzinitiative
 - Bioraffinerien sind berücksichtigt im Nationalen Biomasseaktionsplan zur energetischen Nutzung*

^{* &}quot;Nationaler Biomasseaktionsplan für Deutschland – Beitrag der Biomasse für eine nachhaltige Energieversorgung"

- Nationaler Biomasseaktionsplan zur energetischen Nutzung
 - Unterstützung der Koppelnutzung, durch Forschung, Entwicklung und Demonstration, z. B. zum Konzept der Bioraffinerie ist als Maßnahme zur Reduzierung von Nutzungskonkurrenzen gelistet
 - Stärkere Förderung der Biokraftstoffe der 2. Generation
 - am 29. April 2009 von der Bundesregierung beschlossen

Aktuelle nationale Maßnahmen zur Bioraffinerieentwicklung

- "Aktionsplan für die stoffliche Nutzung nachwachsender Rohstoffe"
 - wird derzeit von der Bundesregierung erarbeitet
 - ergänzt den Nationalen Biomasseaktionsplan zur energetischen Nutzung
 - Ziel: Gesamtkonzept für eine deutliche Steigerung des Biomasseanteils und der Effizienz des Biomasseeinsatzes bei der Rohstoffversorgung in Deutschland
 - Bioraffinerien werden hohe Bedeutung
 - Roadmap Bioraffinerien

Zukünftige Schwerpunkte

- Weitere Verstärkung der F&E Aktivitäten, sowie der Förderung von Pilot- und Demonstrationsanlagen mit besonderem Fokus auf
 - Nachhaltigkeit (THG-Minderung, nachhaltige Chemie)
 - integrierte Bioraffinerien
 - Fraktionierung der Rohstoffe, Zuckerplattform, Synthesegasplattform
 - Kombinierte Produktion von Kraftstoffen und Plattformchemikalien in Primärraffinerien

Zukünftige Schwerpunkte

- Verbesserung der Wirtschaftlichkeit biobasierter Produkte und Bioraffinerien
 - Erschließung weiterer Biomassepotenziale um Stabilität der Rohstoffpreise zu erhöhen
 - Intensivierung von F&E sowie Förderung von Pilot- und Demonstrationsanlagen
 - Verknüpfung mit der Herstellung von Biokraftstoffen
 2. Generation
 - weitere Integration des Chemiesektors in den Emissionshandel

Zukünftige Schwerpunkte

- Behebung der erheblichen Defizite in der Evaluierung der Nachhaltigkeitseffekte von biobasierten Produkten und Bioraffinerien zu verbessern
- Entwicklung von Nachhaltigkeitskriterien zur Sicherstellung einer nachhaltigen Versorgung mit Nahrungsmitteln und Rohstoffen
 - Vorschläge derzeit in Diskussion im Rahmen des "Aktionsplan für die stoffliche Nutzung nachwachsender Rohstoffe"
- Entwicklung Biomasse-Infrastruktur

Zusammenfassung

- Biomasse wird mittelfristig (bis 2050) einen dominierenden Bestandteil der Klima- und Energiestrategie in DEU, der EU und weltweit bleiben
- nachhaltige Biomassenutzung ist möglich Chancen nutzen – Risiken vermeiden
- Bioraffinerien können einen wichtigen Beitrag zur einer nachhaltigen Energie- und Rohstoffstrategie leisten
- Bioraffinerien haben eine strategische Bedeutung für die deutsche Industriepolitik

Zusammenfassung

- Zukünftige Schwerpunkte:
 - Weitere Verstärkung der F&E Aktivitäten, sowie der Förderung von Pilot- und Demonstrationsanlagen
 - Verbesserung der Wirtschaftlichkeit biobasierter Produkte und Bioraffinerien
 - Behebung der erheblichen Defizite in der Evaluierung der Nachhaltigkeitseffekte von biobasierten Produkten und Bioraffinerien
 - Entwicklung von Nachhaltigkeitskriterien zur Sicherstellung einer nachhaltigen Versorgung mit Nahrungsmitteln und Rohstoffen
 - Entwicklung Biomasse-Infrastruktur