

Biorefinery: petrochemicals processing of renewable feedstock

Alexey Volkov

A.V.Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences (**TIPS RAS**)

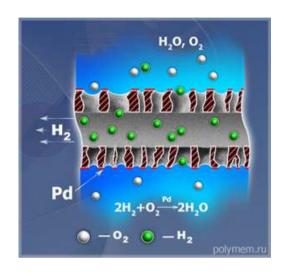
Moscow, Russian Federation

www.ips.ac.ru avolkov@ips.ac.ru

TIPS RAS: Petrochemistry & Oil Refinery

Пробученые вездиния

Бенким да,


Бенким д

More than 75 years expertise in Petrochemistry and Oil refinery:

- Fluid Catalytic cracking9 industrial units in the world
- Visbreaking of heavy residue
 4 industrial units in the world
 - Catalytic dewaxing2 industrial units in Russia
- Acid-catalyzed homogeneous alkylation processes
 15 industrial units in the world
- Alkylation process based on zeolite catalysts
 1 industrial unit

TIPS RAS: Membrane science and technology



- More than 35 years of expertise in membrane science and membrane technology.
- New area, membrane catalysis, was created by Prof. M.V.Gryaznov in TIPS RAS.
- ◆ Deep expertise in development of novel membrane materials (e.g. high permeable glassy polymer) 1970th: first industrial gas separation membranes based on PVTMS.

TIPS RAS: Polymers and Nanocomposites

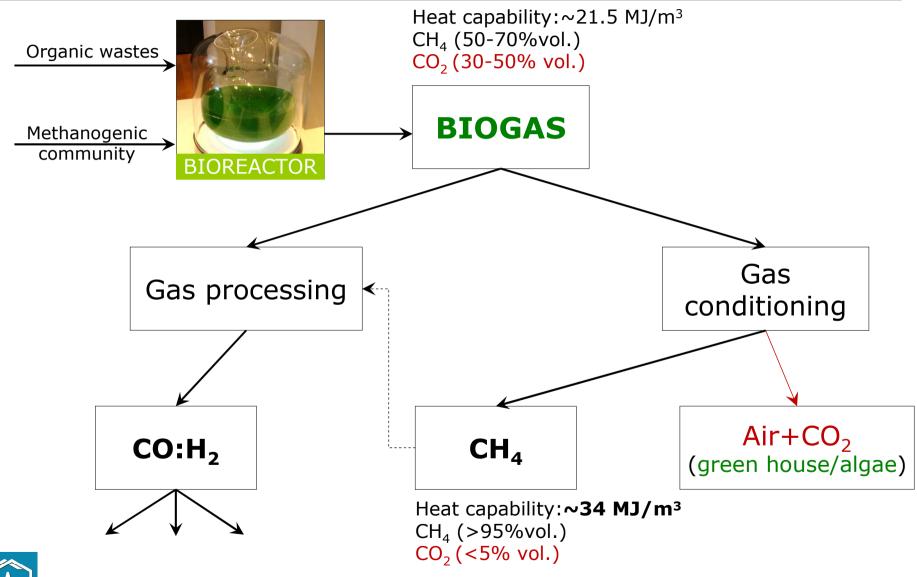
- More than 45 years of expertise in polymer science (novel polymers for different applications).
- Significant contribution in theory of macromolecular reactions and polymer modification.
- Polymer processing: rheology and introduction of nanocomposites.
- Biomedical polymers and drug delivery systems.
- Composite materials.
- ◆ Product commercialization (e.g adhesives for biomedical applications).

Overall strategy

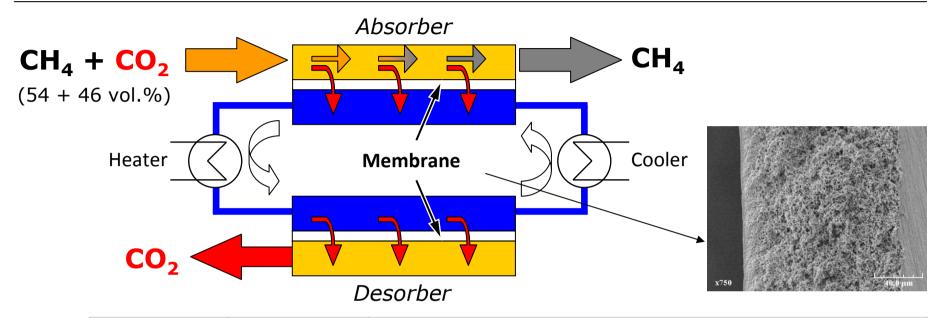
1. Integration with existing processes

- Same process principles used refinery and chemical plants.
- Introduction and further increasing of renewable feedstock part.

2. Flexibility in process scheme

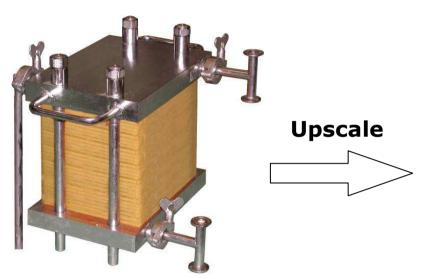

- Utilization of "waste" by-products into new valuable products.
- ◆ Variability of products composition by control of catalyst and process conditions.

Organics to gas



Biogas: flexibility in processing

Biogas conditioning: membrane contactors for CO₂ capture



	T _{des} , °C	Gas composition (%)				
Solvent		Absorber		Desorber		
		CO_2	CH ₄	CO ₂	CH ₄	
H ₂ O	18	16	84	73	27	
K ₂ CO ₃	18	26	74	92	8	
K ₂ CO ₃	60	5	95	99.6	0.4	

Biogas conditioning: pilot testing

Membrane module

Membrane module parameters:

Size, mm: 250x180x250

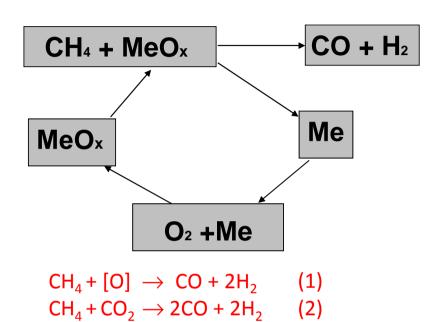
Membrane area: 5 m²

Packing density: 450 m²/m³

Unit capacity: 50 m³ biogas/hour

Biogas processing to syngas

Major drawbacks in biogas processing to syngas:


- **Steam reforming:** CO₂ content in biogas should be lower than 20% to avoid coke formation.
- Oxidation process: Oxygen production unit significantly increase CAPEX. If oxygen is replaced by air, additional separation unit is required to remove ballast gases (mainly, nitrogen) from syngas.

Solution:

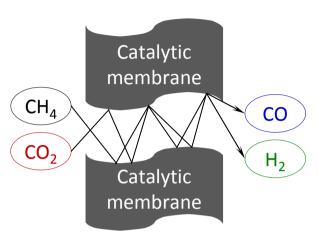
- ▶ Partial oxidation in chemical reactor: no limitations for CO₂ content in biogas!
- Membrane catalytic systems: compact device.

Biogas processing to syngas

Pilot unit

Advantages:

- In this approach, there is no nitrogen in syngas.
- Low explosion risk.


 $H_2 + [O] \rightarrow H_2O$ (3)

 $CO_2 + H_2 \rightarrow CO + H_2O$ (4)

Possibility to varying of syngas composition.

Biogas processing to syngas in membrane reactor

$$CH_4 + CO_2 \rightarrow 2CO + 2H_2$$

$$CH_4 + [O]_s \rightarrow CO + 2H_2 \tag{1}$$

$$CH_4 + 4[O]_s \rightarrow CO_2 + 2H_2O$$
 (2)

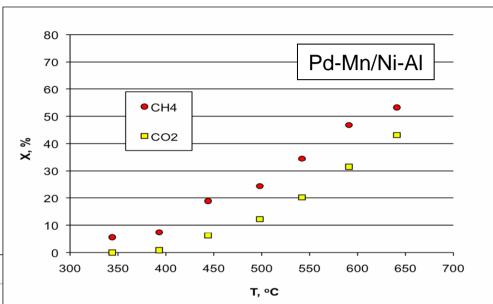
$$CH_4 \rightarrow C + 2H_2 \tag{3}$$

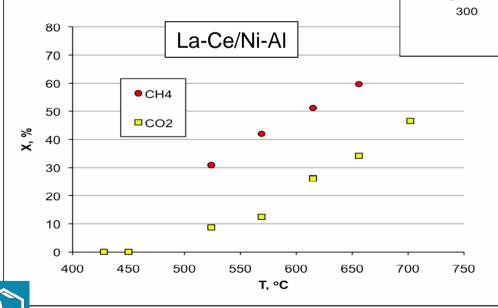
$$H_2$$
 C+ $CO_2 \rightarrow 2CO$ (4)

$$CO + H_2O \rightleftharpoons CO_2 + H_2 \tag{5}$$

[O]_s – "structured" oxygen

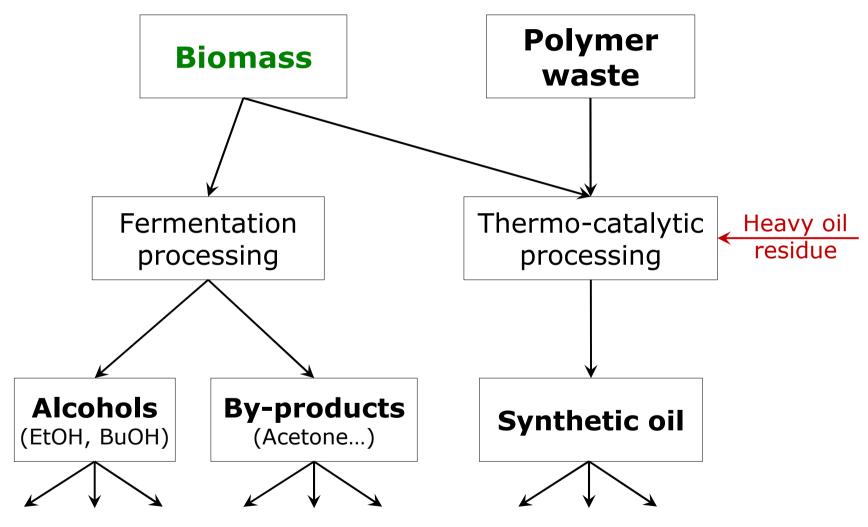
Advantages:


- Decreasing of unit size and catalyst consumption.
- Decreasing of side reaction due to lower contact time in reaction zone.


Support	Active	Productivity,	Syngas	Conversion, %vol.	
	components (oxides)	L/h·dm³ _{membr}	composition, H ₂ /CO	CH ₄	CO ₂
Ni-Al (granules)	La-Ce	250	0.66	10.3	6.8
Ni-Al (membrane)	La-Ce	3780	0.63	51.2	26.1

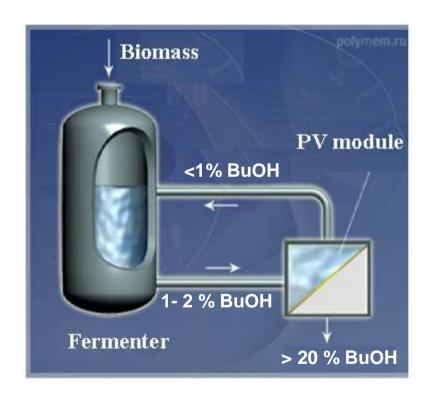
Biogas processing to syngas in membrane reactor

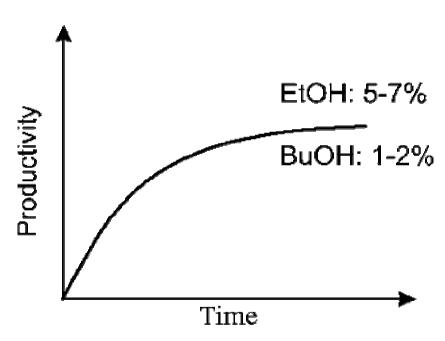
Optimized membrane/catalytic system: conversion of CH₄ and CO₂ as a function of T



TIPS RAS

Organics to liquid

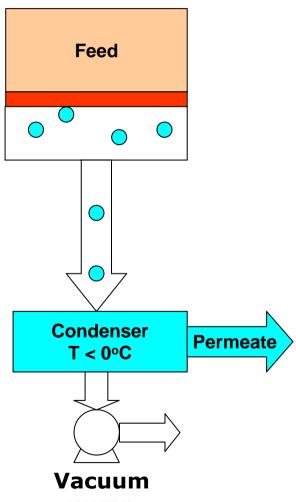

Biomass and polymer waste: flexibility in processing

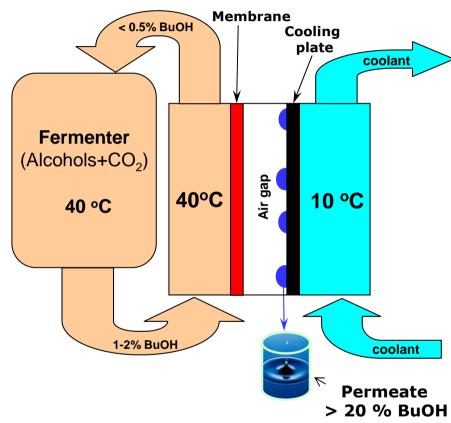


Pervaporation membrane bioreactor: biomass conversion into alcohols

General idea

Fermentation product inhibition

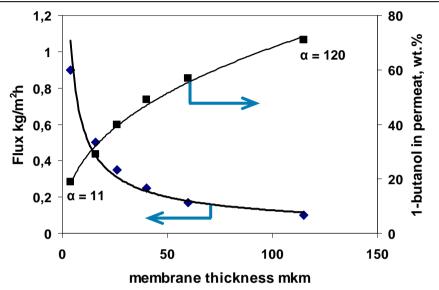



Recovering of organics from fermentation broth: thermopervaporation as a next step in energy efficient PV

Vacuum pervaporation

(conventional approach)

Thermopervaporation


Advantages:

- No vacuum.
- Low condensation temperature 10-20°C.

Thermopervaporation: model fermentation mixture

Feed: $C_{BuOH} = 2 \text{ wt.}\%$ $\Delta T = 45 \text{ }^{\circ}\text{C}$

Model fermentation mixture

Feed temperature: 60°C

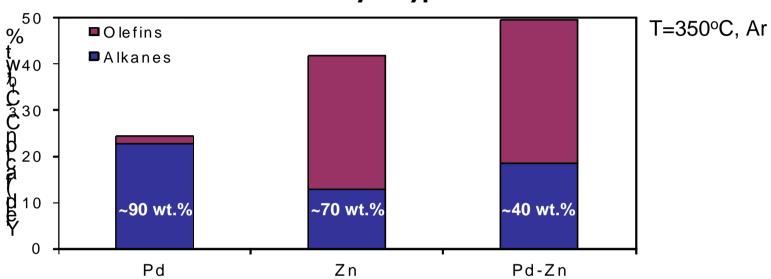
Condensation temperature: 15°C

Liquid mixture	wt. %				
	Ethanol	Butanol	Acetone	Butyric acid	Acetic acid
Feed	0.15	1.00	0.45	0.10	0.40
Permeate	0.74	20.41	1.70	0.07	0.15

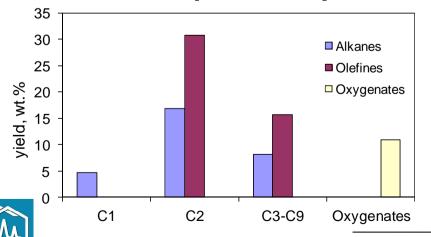
Alcohol conversion

Catalyst	Hydrocarbons	Fraction of non-linear molecules, %
Pt/Al ₂ O ₃	Alkanes	6-8
Cu/support	Olefines	25
W-Re	Olefines	50
Pd - Zn	Alaknes+Olefines	50
Pt/Al ₂ O ₃ + MgO + [TiFeZrMo]	Alkanes	91

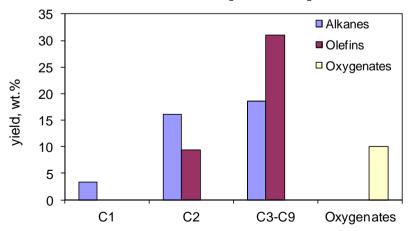
Data for ethanol

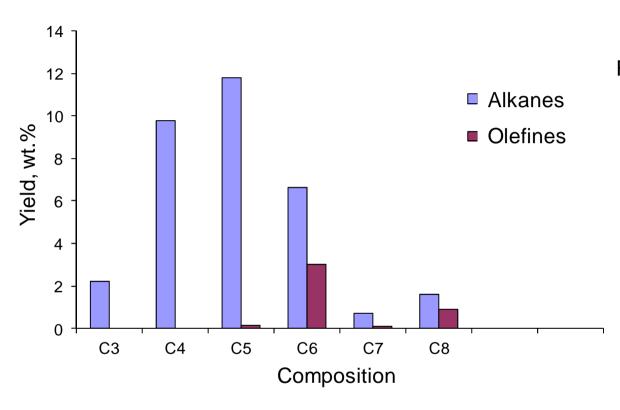

Control of product composition:

- Reaction mechanism depends on catalytic system.
- Presence of some compounds could improve total yield and change product composition (20% glycerin in EtOH \rightarrow double yield of hydrocarbons).



Ethanol conversion: control of process selectivity


Effect of catalyst type


Effect of precursor (mono- and hetero-metallic complexes)

TIPS RAS

Conversion of alcohols mixture (C₂-C₅)

T=350°C, Ar Fe_2O_3 -MgO/Al $_2O_3$ +Pt/Al $_2O_3$

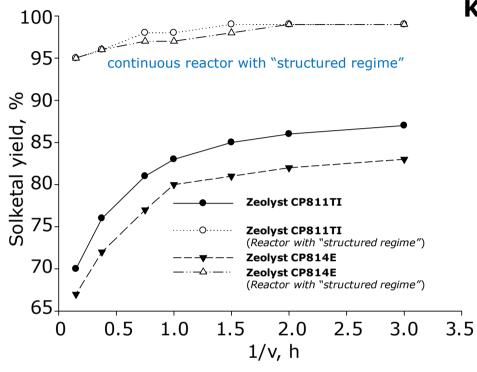
Feed composition		
Ethanol	80%	
Propanol	5%	
Butanol	5%	
Isoamyl alcohol	10%	

- \sim 40% of alkanes (C₄-C₈).
- ♦ ~60% molecules with non-linear structure.

Octane number buster: solketal

Ketalization of glycerin

+


H+ =

- ▶ By-product in biodiesel production (~100 kg per 1 ton of biodiesel)
- ► Poor mixing with gasoline (hydrophilic nature: logK_{ow}=-1.76)
- By-product of largescale petrochemical processes (excess on the market)
- ► Poor mixing with gasoline (hydrophilic nature: logK_{ow}=-0.24)

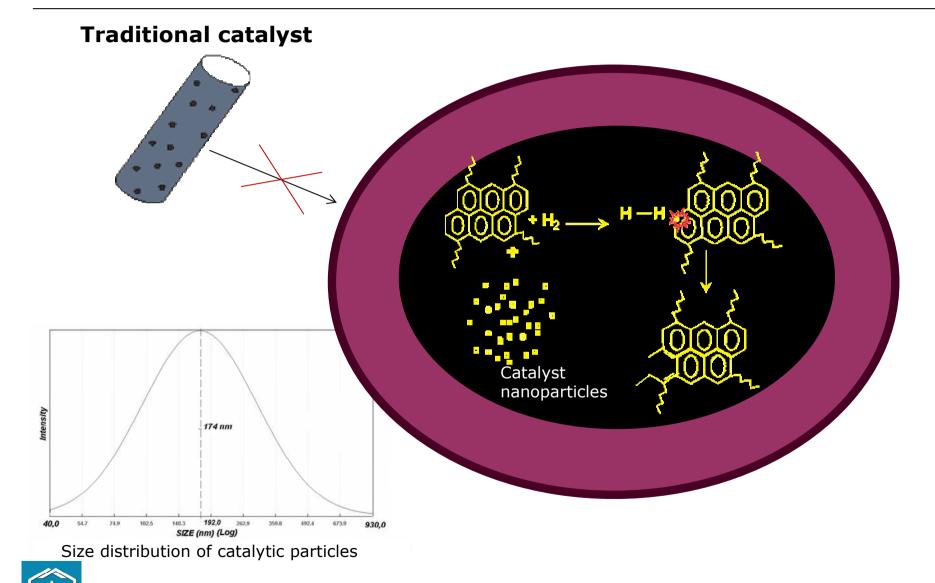
- ► Increasing of octane number
- Reduction of gum formation (good for gasoline from CC with high olefin content)
- Good mixing with gasoline (hydrophobic nature: logK_{ow}=1.07)

Solketal synthesis: continuous reactor + zeolite

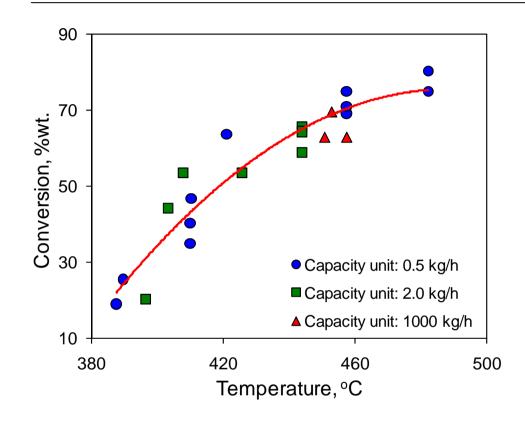
Ketalization is reversible reaction!

Increasing of conversion by:

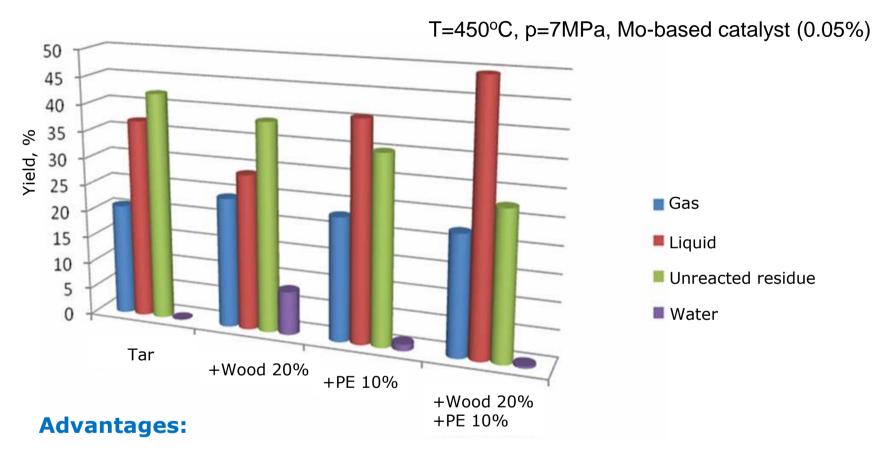
- ◆ Continuous removal of water (distillation cannot be used). <u>Solution</u>: membrane (but still not so effective).
- Selection of catalysts.
 <u>Solution</u>: zeolites.
- Excess of substrate (acetone) in the feed.


<u>Solution</u>: local increasing of acetone:glycerin ratio (like in alkylation process).

New ketalization process developed by TIPS RAS:


- continuous reactor with "structured regime"
- zeolite-based catalyst
- acetone:glycerin = 6:1

Thermo-catalytic processing: concept of novel heavy residual hydroconversion


Scaling up of heavy residual hydroconversion technology

Tar conversion with wood and polymer wastes

- ♦ Wood waste fraction can be increased up to 50% (or even higher after modification of mixing unit).
- Lignin is not a problem in this process.
- Nano-sized catalyst is recycled with unreacted residue.

Summary

- Biorefinery is the future of downstream industry.
- Renewable feedstock can be used at existing refineries and chemical plants (after some process improvements).
- ♦ Wide range of valuable products can be produced from biomass and polymer wastes.

THANK YOU FOR YOUR ATTENTION!!!

Alexey Volkov

Biorefinery: petrochemicals processing of renewable feedstock

www.ips.ac.ru avolkov@ips.ac.ru

